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1. INTRODUCTION

Our research has been progressing in two directions:

1) A traveling wave approach directed to furthering the
results as in e.g., [10], [11], [12]. 1In particular, we have
concentrated on the problem of identification of dominant modes of
vibrations (dominant traveling wave frequencies) [8]. 1In [8], we
have established an analogy between vibrations traveling along a
flexible structure and signal returns from targets to an array of

sensors.

@©

2) H /H theory of infinite dimensional systems along the
lines of the results we had established in [1-3].

Our work in both of these is still in progress, and will
continue. These are described in more detail in Sections 2 and 3,

respectively.




2. CONTROL OF FLEXIBLE LARGE SPACE STRUCTURES

As it is evidenced in many recent publications on the subject
(e.g., many papers in several sessions of recent conferences), the
main theme of research is on Identification and Control of
finitely many dominant modes of vibrations, using finite dimen-
sional compensators. Whether this be in State-Space form or in
Frequency Domain (e.g., considering those structures whose
transfer matrices fall into the Callier-Desoer Algebra), it
requires the modeling of a finite number of the (infinitely many)
modes of vibrations, and thus involves an approximation of
Hyperbolic Partial Differential equations (see, e.g., [10]). The
modes to be modeled for control must satisfy the differential
equation describing the structure. A common procedure for this is

to consider hyperbolic differential equations of the form

2
d u(t,x) du(t,x)
(1) _ + A —— + A (x)u(t,x) = f(x,t)
2 1 at 2
at

where Az(x) is a partial differential operator in x (usually the
second or the fourth order). Using an orthonormal set of
functions ¢4 (x) which are the eigenfunctions of A2(x), (1) can

be decoupled into an infinite set of ordinary differential
equations for the (temporal oscillation) modes of (1), each
associated with one of ¢(x) (that describes the spatial amplitude
distribution of the mode) (See e.g., [4], [9]). Among these
infinitely many modes, using a finite dimensional compensator, we

can only control a finite number of ones.




These can be then described in the usual state-space form as

(2) Xx = FX + Gu

(3) Y Hx + v1 + V.

In (2), F describes the dominant modes of vibrations we wish
to control, G describes the distribution of control inputs, and
u is the control input. It is important to note here that in our
approach to identification of the dominant modes, we do not need
to assume any a priori knowledge of the frequencies of vibration.

In (3) y is the total of the measurements from the struc-

ture; v is the measurement noise; H describes the distribution of
the sensors, and vl describes the effect of the modes that are not
modeled in F.

The problems that are being considered are

i) identification of the dominant modes (i.e., the unknown

F),
ii) choosing the right sensor structure and then identifi-

cation of H,
iii) choosing the right distribution of actuators (determina-
tion of G)
iv) finding the right controller structure to provide enough
damping to the dominant vibrations despite
a) the measurement noise v,

b) the unmodeled modes vl.

Particularly important is the considerution of vl, as it has
been shown that it can cause instabilities ([4]). This is refer-
red to as Spillover. The noise v can be handled considerably by

usual stochastic control techniques.

-3 -




It appears that certain system identification/signal process-

ing techniques have already been studied for applicability to this
problem. For example, ARMA models and their identification [5,7],
frequency filtering for spectral decomposition via Discrete Four-
ier Transform {5], and for isolation of the control input from v1
(to prevent spillover) [4]. It is recognized that [5], the domi-
nant modes must be identified on-line. Certain such techniques
have already been in use in approximation of partial differential
equations for a long time [10].

We have recently concentrated on System Identification,
Frequency Filtering and finding the right location of the sensors
for this purpose. We have established (see [8], Appendix A) an
analogy with arrays of sensors used for target signal returns
(especially those for Radars). As a consequence, we have
developed several new results in ([8], Appendix A). It turns out
that suitable location of sensors can be helpful simultaneously
for identification of the dominant modes as well as in isolation
(filtering) of the unmodeled modes from the output to prevent the
Spillover. These are described in some detail in [8)]) (Appendix A,
Section 5).

i) The system identification problem we have considered in
[8] (Appendix A) is for systems with zero inputs. We have been
working on extending these techniques to systems with possibly
nonzero inputs, and to time-varying systems.

ii) We have been investigating the Toeplitz (and related)

matrices that arise in the covariances in our technique. This




would enable us to approximate the dominant modes among infinitely
many modes of vibrations in a more effective way.

iii) We have been investigating the dualization of the results
on sensor location to actuator locations for use in disturbance
cancelling, and extension of our system identification techniques
to control of flexible structures.

Our approach here has been traveling wave modeling of the
vibrations, and the analogy we have established with arrays of
sensors arising in target signal returns, taking into consider-
ation in full the structure of the partial differential equations
that arise. This, in fact, appears to be a very general approach
to systems described via partial differential equations (see,

e.g., [12]).




2 w©
3. H /H THEORY OF INFINITE DIMENSIONAL SYSTEMS

The problem we have been working on is the following.
Let G be a semi-infinite matrix whose columns are in 22

Let F be linear operator on 22. Consider the sequence

G, FG F2G FkG N
{ ’ ’ ’ °'°°) - ( }k=0

Now consider a generalized Gram-Schmidt process whereby we
consider the orthogonal direct sums

k-1
ImG + 1ImFG + ... + 1lmF G

=
i

= ¥ o¥ ® .... Y
0 1 k-1

where the subspaces Y £ are mutually orthogonal. This is similar
J

to the idea of a Lancoz Sequence where for a finite vector x and a

finite matrix A, the sequence

2
{(x, AX, A X, ...}

is orthogonalized via Gram-Schmidt. 1In this case, the orthogonal

k ' k-1 ‘
projection of A to the space spanned by (x, Ax,...., A )
X X

can be recursively obtained. This is related to orthogonal poly-
nomials (Lancoz polynomials).

A similar technique has been obtained in [7] in the 22case
when F is the shift operator.

We are working on extension of this to operators (F,G) where

(F,G,H) is the realization [1]) of a transfer matrix




where Q, R, P1 Ql are H matrices Q, Q1 being admissible [1].

Such an extension applied to the reachability map [G,FG,....]
yields a finite dimensional approximation to H. One can recur-
sively obtain higher order approximations. This would also have
application to Least squares identification of a linear systenm,
and is also related to Lattice filters. This research is

presently continuing.
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ABSTRACT

In this paper, we give a new extended an” unifying system
identification technique for a class of systems that include all
main signal models that arise in the Harmonic Decomposition
Problem. This technique unifies and extends the previously
developed system identification techniques which are improvements
on the PISARENKO (MUSIC, dually) Harmonic Decomposition as they
arise in arrays of sensors. The advantages of the technique and
some of its specializations given here include having no
assumptions of stationarity on the stochastic processes involved.
Another contribution of this technique is to show that it can also '
be used without any resort to probability theoretic concepts, thus
bypassing the approximation of autocorrelations via time averages,
yielding the system parameters exactly. This technique can
be utilized to determine the dominant modes of vibrations of
flexible structures as well. An analogy is established between
arrays of sensors for target signal returns and those that can be

used for vibrations in flexible structures.
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1. INTRODUCTION

In this paper, we establish a new extended and unifying sys-
tem identification technique for a class of systems that include
all basic signal models that arise in the Harmonic Decomposition
Problem.

The problem considered is the following:

Given the system model

n
X = Fx H x(0) € R
t+1 t’ (0) !

(1)
yt = th + vt, t=290,1, 2,...

and the output sequence yo,..., yM; determine H and F.

Here xt € Rn, and Yt € Rp. v is the measurement noise, with

E (vtvtT} = Rt. The only assumption on (vt} is that it should
decorrelate after a finite time o > 1 (this assumption is also
used in (3]). This signal model includes most of the signals
arising in the Harmonic Decomposition Problem (e.g., determining
the frequency spectrum of a given signal, as in arrays of sensors,
or as in vibrations arising in certain flexible structures
possibly with some damping).

In Sections 2 and 3, we develop our general system
identification technique. 1In Sections 4 and 5, we describe the
applications to two important situations: i) Arrays of Sensors,
ii) vibrations arising in Flexible Space Structures. Also, we

compare our technique to previously developed techniques such as

MUSIC, PISARENKO HARMONTC DECOMPOSITION, and their previous

-11-




extensions that can be found in the literature (See e.g., [2,3]
and the references there). The advantages of the technique and
some of its specializations given here include having no
assumptions of stationarity on the stochastic processes involved.
Another contribution of this technique is to show that it can also
be used without any resort to probability theoretic concepts,
bypassing the approximation of autocorrelations via time averages.

Thus it yields the system parameters exactly.

2. IDENTIFICATION FROM OUTPUT COVARIANCES (PROBABILISTIC APPROACH)

Consider
yt
(2) . '
Yt+N_J
and
yt-N—a
. H t>N+o0o ,
yt-a

corresponding to the signal model in (1).

_12_




Using (1), (2) can be written as

vt
Yy H
t HF vt 1
3 Y @ = . = . X + +
(3) ¢ . : c . '
yt+N HFN V.
and Ve
F‘Y 7]
t-N-o
4 Y : = .
(4) t-N-o .
Yt-a
" [ v
HF t-N=-¢
= . X +
. t-N-o .
v
HFN t-o
v
t-N-o
Assuming

o > 1 is chosen large enough so that Vv and

£-N are uncorrelated, and assuming that {vt) is a zero-mean
-N-o
process, we obtain

T . T T
(%) E(Y Y } = . E{x x a
t t-N-o N t t=-N-o¢ N

-13-




If

T
P = E(xtxt) ; t=20,1,...,
then,
N+o
E{x X } = F P ; t-N-o > O.
t t-N-o t-N-o
Thus,
T t t-N-o 7
E{Y Y } =a F P (FT) @ =K ; t-N-¢ > 0.
t t-N-o N O N N

It is straightforward to see that the outputs produced by a
system of the form

b = Fx ,
t+1 t

= Hx ; X € R t >0
Yo t’ 0 ! =

satisfies a difference equation (i.e., has an Autoregressive (AR)

model)
Ay + ... +Ay =0;t>r,
rt
n . »
for every x0 € R, if and only if
(A ,...,A ]Ja =0,
0 r r

where A ’s are pxp matrices. Thus we obtain
i

7. THEOREM.
If F is nonsingular (no zero eigenvalues), and Pois nonsing-

ular, then the AR models for (1) are characterized as solutions of
(7a) AK =0,

or, equivalently,

-14-




where

A=[A,..., A].
[(Agreeer AL

It is clear that usually in system identification, we are not
interested in finding just any AR model, neither all of them. All
the AR models other then minimal ones will contain redundant modes
(eigenvalues of F in (6)), that do not, in fact, exist in the true
system that produces the data yo,...,yM. The same is true for
the models (6), or (1). Assuming an irredundant state-space model
in (1), (F,H) is an observable pair. Then, it is well-known that
the minimal (irredundant) AR models are characterized via the
observability indices of (F,H).

Contrary to the usual assumption in most literature, for
multi-output systems, in the minimal AR models, Ar is not Ip. From
the results obtained above, and from the elementary realization
theory, it follows that a minimal AR model can be obtained by
finding the linear dependence relationships among the rows or the
columns of the matrix KN. r is the largest observability index,
and N must be chosen to be greater than or equal to the largest
observability index. This can be done exactly the same way
that canonical forms for a pair (F,G) or (H,F) are obtained (see,

e.g., [1], for a detailed exposition of this). This leads to

minimal AR representations of the form

D = 0; t>0,
Q( )Yt >

where Q(D) is a pxp polynomial matrix

r r-1
Q(D) =AD + A D + . . .+ A, r > N,
r r-1 0

-15-




D being the advance operator. 1In particular, a minimal Q(D) can
be computed which is row proper with row degrees equal to the
observability indices, from which a minimal state-space
realization of the system producing the data yo, . . ey, yM can be
easily obtained (see, e.g., [1]) by inspection of Ai’s. Clearly,
N must be chosen to be greater than or equal to the largest
observability index. Once a minimal (F,H) is obtained as
described above (which is unique up to a nonsingular state-space
transformation), it is straightforward to compute Po uniquely up
to the particular state-space transformation, since ON is left
invertible, and (by assumption) F has no zero eigenvalues.

Once F, H, P0 are determined, the autocorrelation function

of vt can be easily obtained from

Yo
4 T T T
7b E t+1 Y, , e e .
(7b) { . [ & Yt+1 Yt+a])
4
o t+o J

t

where
v
t

(8) R E (| . v, Ty

= . v . . . v
t . t’ ’ t+o

v
t+o
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yields the autocorrelation function of {vt). (Note that the first
term in (7b) is known).
9. REMARK.

Note that contrary to most system identification techniques,
our technique, in particular, has no stationarity assumptiqn on
the processes {yt} or (vt). In fact, in many situations, the
eigenvalues of F are exactly on the unit circle. This violates
the conditions for stationarity of {yt), even if (vt} were assumed
to be a stationary process. The technique given above has no such
assumptions.

10. REMARK.

Here we did not assume any special structure on

1 T
R: =E({(vv}).
t tt

1
If we assume that i) Rt has the special diagonal structure with
equal diagonal entries

> 0,

1
R : = dia r }); r
t 9t 1} 1

and, ii) (vt) is a stationary white-noise process, then we can

directly consider

(10a) Z: = E({}]vY [Yt' « s o Y ]}




2
Then R will be a diagonal matrix whose diagonal entries will be
the smallest eigenvalue of Z(= rl). From an eigenvalue-

eigenvector decomposition of Z, we can then compute

1 t Tt T
K: =aqFP(F) a.
N N 0 N
) 1
In this case, we can obtain Po, F and H from KN by the same
procedure that was applied to KN, explained in this section.
Then, this special case becomes a generalization of the

well-known PISARENKO Harmonic Decomposition technique to the case

where the output of (1) is not necessarily assumed to be scalar.

11. REMARK.

It is clear that the above technique also applies to the case
where (F,H) may have complex numbers as their entries, and {vt},
{yt) are complex valued. In this case, we only need to replace
"T" (transpose) with "*" (complex conjugate transpose) through-
out, and change the condition (7a) to

AK = 0,
N

or, equivalently,

12. REMARK.

There is a special case where the technique developed here
can be simplified considerably. The reason why yt and Yt-N-a
are both considered is that for our technique, ON must have

linearly independent columns. Suppose that the columns of H are

-18-




linearly independent. Then consider

(12a) E (Y yo 0 Fop (F*)° “n*
a = =
{ th_ ) N o (

g

C .
N

Then, as F, P0 are nonsingqular, and since the rows of H
are linearly independent, one can obtain (H,F) and the minimal AR
representations of (1) via the left kernel of CN, as explained in
this section. Next, P0 can be obtained from CN. In certain
cases, one is interested in finding a nonzero row vector a such

that

for all initial conditions. (See section 4). Clearly, this

corresponds to the condition

Obviously, such a vector a can be obtained by computing a
nonzero vector a* which is in the right kernel of CN, i.e.,

Cc a* = o.
N

If we are only interested in finding such a nulling vector,

it is enough to consider the right or left kernel of

¢t = Ely yb ) HE P (F*) "u*
N YYe ! © 0 )
i.e.,
aH = 0 ,
if and only if

1
ac = 0,
N

if and only if

H*a* = o,

-19-




if and only if

3. NONPROBABILISTIC APPROACH
There are standard techniques of estimating Po such as

1 Ft T(F’I‘)t
_— X X
oﬂt 00

(13) Po=

[ <

t

where ﬂtis a weighting factor, and a is some constant. It is
clear that nonsingularity of P is equivalent to the reachability
of the pair (Fy, xo) provided ﬂt= 72t for all t, where v is a~
nonzero number, and M is larger than the order of F.

It is important to note that, as obvious from the results in
Section 2, provided that P0 in (13) is nonsingular, (F,H) and Po
can be obtained without having to use any probability theory
concepts. In this latter case, the autocorrelations and
covariances of all the quantities are their time-averages as in
(13). Thus, then the assumption on {vt} becomes that its time-
average autocorrelation function becomes exactly zero after some
finite time. Thus, everything described so far can be carried out

(with no approximation, as opposed to the Probabilistic Approach)

in terms of time-averages. Thus, the technique developed here is
perfectly applicable to many realistic situations where there is

usually no data available other than yo, Yl' .« o e yM.

-20-~




4. HARMONIC DECOMPOSITION FOR ARRAYS OF SENSORS

There is a substantial amount of literature on Harmonic
Decomposition oriented system identification techniques (see,
e.g., [2-3] and the references there). Among these, [2-3]
appear to us as among the representative generalizations of the
PISARENKO Harmonic Decomposition technique.

In this case, usually target returns are narrowband signals

, w . Then F has the form

with center frequencies wl, e . .
n

jw.at
F = diag (ejwl },

where At is the sampling interval. The matrix H in (1) now

corresponds to the measurements by an array of sensors. It has

the structure

F‘ ]
1 1 e e . 1
w w e . . W
1 2 n
(14) H = . . . ’
p-1 p-1 p-1
W w e e . w
1 2 n
- —
where
2 T
w, = ejwi 1
i

ri is the delay due to spacing of the sensors. We have assumed
in (14) that the sensors are equally spaced. Clearly, our
techniques in Section 3 are applicable even if the sensors were
not placed with equal distances. The problem is to determine

both {(w , « + +. ,w }), and {(r , . . . ,7 }). The first set
1 n 1 n

-21-




yields the Doppler frequencies. fi's yield the angles of arri-
vals. In this case the technique given in Remark 10 coincides
with the technique developed in [2] for the special case that {vt}
is assumed to be a stationary white-noise process. Clearly, the
primary technique developed in Sections 2 and 3 does not have this
assumption on (vt}.

A main difference between the technique in Remark 10, and
the one given in [2] is that, in [2] the target return signals are
assumed to be stationary zero-mean stochastic processes with a
positive definite covariance matrix. However, in many cases, the
return signals are, in fact, deterministic signals (sinusoidal
signals in the case of Radars, for example), with the only
uncertainty being at the initial state xo. We exploit this fact
in Remark 10. Thus, the technique in Remark 10 is a directly
applicable exact technique that can be used purely in terms of
exact time averages as opposed to the technique in [2] which has
to approximate probabilistic covariances via time averages,
introducing an additional approximation error. Also, we can
incorporate the uncertainty in signal magnitudes into xo since
F is diagonal. Thus the H matrix in (14) has a simpler
structure.

Another difference between the techniques in [2] and in
Remark 10 is that, in our case, the determination of the number of
targets is a problem of determining linear dependencies among the
rows (or columns) of a positive semidefinite matrix, whereas tiis
is approached in [2] as a hypothesis testing problem via a

likelihood-ratio.

-22-




In the technique developed in Section 2, the observability
of the pair (H,F) (linear independence of the columns of nN) is
possible via different ri’s for sources with the same center
frequency, and these cannot exceed p. But the technique in
Section 2 (as well as the one in [2]) are applicable to the
situation of an arbitrary number of targets that can be larger
than p ( = number of sensors). For example, then, two sensors
would be enough for any number of targets.

Next, suppose that each target return signal has a different
frequency, and that p ( = number of sensors) is greater than
n = number of return signals. In this case the columns of H in
(14) will be linearly independent. Then, the simplified technique
in Remark (12) will yield {wl, e . ,wn) and {rl, . . e ,rn}
in terms of the left and the right kernels of CN as in Remark 12.

If all the incoming signals to the array are interference,
and if we want to find a row vector a such that

ayt = 0; t=90,1, . . .,

then any nonzero column vector in the right kernel of CN will
do as a*, as explained in Remark 12. Thus we can both null and
estimate interference sources using the left and right kernels of
CN. If we do not want to estimate wi’s and ri's it is enough to
consider only the right kernel of CN. In fact, if we require
only output nulling, clearly we can only consider C; as explained
in Remark 12. These latter cases constitute generalizations of
the techniques given in [3] even in this case as follows. Suppose

(H,F) is observable, but the columns of H are not linearly

independent. 1In this case, the row vectors a such that

-23-




aH = 0 ,
still coincide with the row vectors a such that

c a* = o.
N

Thus, our technique still works even if the number of interference
signals are dgreater than or equal to the number of sensors as far
as (H,F) remains observable, contrary to the situation assumed in
[3)]. We should also note that the technique in [3] is
probabilistic, and as such it introduces an approximation error in
estimating the probabilistic covariances via time averages,
whereas our techniques can be used directly via time-averages as
well if we define P0 as in (14), and they do not require this
extra approximation, (see Section 3). Also, note that via our
development, the results obtained are still applicable even if
sensors are not equally spaced. In the case of equally spaced
sensors, the output (interference) nulling vectors a’s have also

the following interpretation that has been missed in [3]. If
(15) a = [a ,..0,a ]
0 P

is a vector such that

* 1 *
(16) CNa = 0, or, CNa = 0,
then, clearly
p-1
(17) a(w.) = a +a W' + . . . + a W_ = 0.
1 0 li p-11i
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Thus, if a(w) denotes the polynomial obtained from a vector o as
in (15-17), the roots of a greatest common divisor of all such

polynomials arew , . . . , W .
1 p-1

1l7a. REMARK

A technique for finding this polynomial whose roots are

W ,eee, W is as follows:
1 p-1

Let {71, 7;, . . ., 7% be a basis for the kernel of CN
r

1 .
or (equivalently, of CN). Then all vectors a in this subspace

are given by

g *

kglakyk'
for some arbitrary al, e . ,ar € R (or C). Thus a greatest
common divisor of the polynomials 11(w), .« « o 7r(w)
obtained as described above from 71, o e o 7r is the desired
polynomial.

18. REMARK.

It is well-known that MUSIC is the spatial dual of the
PISARENKO technique. Thus our results can be similarly dualized

to obtain spatial generalizations of MUSIC.
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5. VIBRATIONS IN FLEXIBLE STRUCTURES

In what follows, first we establish an analogy between an
array of sensors receiving target return signals after delays, and
the vibrations occurring in a flexible structure. For example,

consider two types of flexible structures;

2 2
a u(t,x) 2 a4 u(t,x)
(19) ——— = ¢ ——— (elastic string),
2 2
at ax
or,
2 4
a v(t,x) 2 8 v(t,x)
(20) ~—— =c¢ — (rod).
2 4
at ax

We can approach the rod problem (20) first considering

2
3 v(t,x)
u(t,x): = ——mm8 — .

2
ax

This transforms the situation (20) to the wave equation situation
(19) . Thus we will concentrate on the wave equation (19).

It is well known that the general solution of (19) can be

written as
-

X X
u(t,x) = f(t - —) + g(t + — )
C C
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which represents two waves f(t) and g(t) traveling in opposite
directions along the string with speed c. The functions f and g
are determined via the boundary and the initial conditions. For

simplicity, let us consider a semi-infinite string. 1In this case

u(t,x) = f(t - x )
c
which is a wave f(t) traveling in one direction. The case where g
also exists can also be approached similarly. But for simplicity
of exposition of the ideas here, we assume g = 0. A more general
traveling wave approach for more complicated structures can be
found, e.g., in [5].
The function f(t) which represents the oscillations at x = 0
is a sum of sinusoids (infinitely many)
£(t) = E A ekt
k=1 k
Now we have a situation quite analogous to the case of an array of
sensors receiving f(t) as a signal emitted by targets after a
certain delay each. This analogy can now be exploited to place
the sensors on a vibrating structure in certain ways that makes
the problem of estimating the vibration modes much easier.
To explain this, first consider a single sinusoid

jut
s(t) = Ae ;s £t € R.

Suppose that we place sensors at equally spaced points along
the string, where d > 0 is the distance between the sensors
(although our techniques in Sections 2 and 3 are still applicable

for arbitrary number of sensors spaced arbitrarily).
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Then each sensor measures

d
jo (t-r-)
Y (t) = Re C + v (t); teR 0<rc<op,
r r

where v (t) is the measurement noise.
r

Thus, we have

kat
¥0( )
21 =
(21) Yk .
y (kat)
p
W —
Ir w
€j2r w
e jokat
= A . e + v(kat)
*j(p=1)r w
e
where
d
r=—-,; k=0,1, 2,...,
c

and At is the sampling interval. Suppose that there are n domi-

nant modes w ‘s that we want to identify, and the unmodeled modes
i

contribute negligibly. Then we have

X = Fx ,
t+1 t

where F describes the dominant modes of vibrations, and

1 1 [ ] L ] L] L ] 1

w w w
1 2 n

= . . . X + Vv
Ve ) . ) t ot

p-1 p-1 p-1 M

w w \Y nolse
1 2 n

2'000’

= Hx + v ; t=0, 1,
t t
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where

Jw.r
wo=e 1,

v

L S vet); k=0,1, 2,... .

Thus, now we have a simpler system identification problem where H
has a nice structure as in Section 4. Clearly, F, H can be found
via the system identification techniques developed here. 1In fact,
in this case r = g is known. Thus if we place more sensors than
the number of dominant modes, the much simpler technique given in
Remark 12 (specialized in Section 4) can be utilized to estimate
wi’s, via kernel of C;, or CN.

The case where there is damping of the modes of vibrations
can be very similarly solved via these techniques. One can pursue
the analogy we have established further. There are alternatives
to placing p different sensors as described above. One can
consider placing a moving sensor along the x-axis, and effectively
achieve the same result. This is similar to the idea of a
Synthetic Aperture Radar (SAR). Note that in the case of flexible

structures, the problem is simpler because no angle of arrival

estimation is needed.

22. REMARK
The analogy with array of sensors we described above leads to
some other results for flexible structures. For example, suppose
we weigh the output of each sensor via ak and add them. Then we
obtain the response to an incoming wave of frequency « as
N-1

A.kgoakyk(t)

y(t)
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d
N-1 -jkw jot  _
A-( ) a e C) e + v(t)
k=0 k

jut
A*H(w)e + H{w)V(t).

Suppose, for example that, to prevent spillover (see e.g.,
[4]), we choose ak's in such a way that H(w) is a low pass

finite impulse response filter whose passband includes the highest

dominant frequency of vibration.

Thus, the spillover problem [4] due to high frequency

unmodeled modes would be eliminated.
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